FImP Miracle of Sterile Neutrino by Scale Invariance 10 014 Zhaofeng Kang, KIAS, 28.01.2015 Joint Winter Conference on Particle Physics, String and Cosmology YongPyong-High1 2015

Outline

Three leading new physics

Scale invariant vMSM

* Conclusions

Three leading new physics Theoretically: gauge hierarchy problem Why does electro-weak (EW) scale exist facing $M_{\rm pl}$? $\cdots - (f + m_{12}^{2} + m_{12}^{2}) + \cdots \propto n^{2} \sim m_{pl}^{2} > m_{12}^{2}$ Solutions: supersymmetry, composite,..., scale invariance? Phenomenologically: nonzero neutrino masses & the existence of dark matter (DM)

Adding right-handed neutrinos (RHNs) & neutral stable particle

Three leading new physics

Address them in an unified framework?

SUSY: solving gauge hierarchy problem & offering LSP as DM candidate. However, it is not a theory of neutrino

vMSM: DM is the keV scale RHN, unifying RHN and DM!!! But it can not address the hierarchy problem

Their dark matter is beautiful

Dark matter is predicted instead of added! Stability of DM is not required but accident! Correct relic density is via a miracle, for LSP being WMIP...

Scale invariant vMSM (vSISM)

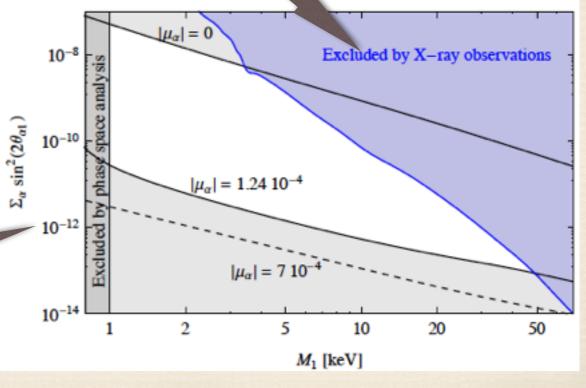
vMSM version 1.0

T. Asaka, S. Blanchet and M. Shaposhnikov, Phys. Lett. B 631 (2005) 151.

vMSM=SM+RHNs=the canonical seesaw with very low seesaw scale

 $\mathcal{L}_{\nu \text{MSM}} = \mathcal{L}_{\text{MSM}} + \bar{N}_I i \partial_\mu \gamma^\mu N_I - F_{\alpha I} \bar{L}_\alpha N_I \Phi - \frac{M_I}{2} \bar{N}_I^c N_I + \text{h.c.} ,$

Accidental stability of the lightest RHN, N1:


$$\Gamma_{N_1 \to \nu \gamma} \simeq \frac{9G_F^2 \alpha M_1^5}{256\pi^4} \times \sin^2 \theta_1,$$

Prediction: *X*-ray line—3.5keV line?

Relic density: sterile-active neutrino oscillation with(out) resonant effect

Lyman-alpha bound

production is problematic

Scale invariant vMSM (vSISM) * vMSM version 2.0

vMSM 2.0=vMSM 1.0 with classical SI (no massive couplings)

 $\begin{aligned} \mathcal{L} = & \frac{\lambda_1}{2} |H|^4 + \frac{\lambda_2}{2} |S|^4 + \lambda_3 |H|^2 |S|^2 + \lambda_4 |H|^2 \left(S^2 + S^{*2} \right) + \lambda_5 |S|^2 \left(S^2 + S^{*2} \right) + \frac{\lambda_6}{2} \left(S^4 + S^{*4} \right) \\ & + \left(\frac{\lambda_{sn}}{2} SN^2 + y_N \bar{\ell} HN + c.c. \right). \end{aligned}$

SI demands singlets with VEVs to give Majorana masses of RHNs; One complex singlet is required to accommodate Higgs phenomenology

similar singlet was introduced before, but only here it is a result of symmetry, namely in the sprite of naturalness

No need of any global symmetry, but here imposing CP-invariance in the Higgs sector in order to reduce parameters

Scale invariant vMSM (vSISM) S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973). * SI spontaneously breaking: origin of VEVs SI is anomaly, so a scaleless theory can break SI! $v_{\varphi} = Q \exp\left(-A/2B - 1/4\right)$ 0.02
$$\begin{split} V_{\rm eff} &= A \phi_{\rm cl}^4 + B \phi_{\rm cl}^4 \ln \frac{\phi_{\rm cl}^2}{Q^2}, \end{split} \qquad A &= \frac{\lambda}{8} + \frac{1}{64\pi^2} \sum_P n_P g_P^4 \left(-A_P + \ln g_P^2 \right), \\ B &= \frac{1}{64\pi^2} \sum_P n_P g_P^4, \end{split}$$
0.04 0.06 -0.08 0.4 0.6 The prediction of a light Higgs state $m_{\phi}^2 = 8B\langle \phi_{\rm cl} \rangle^2$ Heavy top makes *B*<0, so SM can not be SI. But extension by *S* works!

$$V(J, 6, \lambda) = \frac{\lambda_J}{4!} J^4 + \frac{\lambda_6}{4!} \zeta^4 + \frac{\lambda_1}{4!} \lambda^4 + \frac{\lambda_{JB}}{4!} J^2 6^2 + \frac{\lambda_{4J}}{4} \lambda^2 J^2 + \frac{\lambda_{44}}{4} \lambda^2 d^2$$

3-d classical field space, using the Gilderner-Weinberg approach

PGSB of SI is dominated by singlet with largest VEV~TeV, with mass around 100 GeV

Scale invariant vMSM (vSISM) * FImP (keV FIMP) miracle

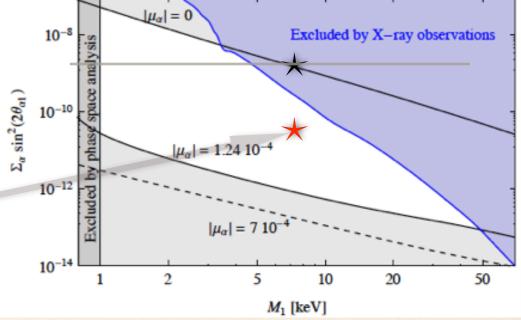
EWSB favors singlets with VEVs~TeV, thus a keV RHN means

$$\frac{1}{2}\lambda_{j}S_{N}^{2} \xrightarrow{S'=\frac{1}{2}(S_{3}+S)} \begin{cases} M_{N} = \lambda \langle S \rangle = \lambda = \frac{M_{N}}{\langle S \rangle} \sim 10^{-8} \\ \frac{1}{2\sqrt{2}}\lambda \cdot SN^{2} \end{cases}$$

At the same time, RHN gains a feeble interaction, which is too weak to thermalize it. However, it is just at the correct order to freeze-in RHN:

$$\Omega_{\rm DM} h^2 = 0.11 \times \sum_{H_a = \mathcal{P}, H_2} \left(\frac{m_{\rm DM}}{10 \,\mathrm{keV}} \right)^3 \left(\frac{\mathrm{TeV}}{v_J} \right)^2 \left(\frac{100 \,\mathrm{GeV}}{m_{H_a}} \right) \left(\frac{10^3}{g_\star^S \sqrt{g_\star^{\rho}}} \right)$$

By scale invariance, RHN mass and dynamics accounting for relic density share the same origin——FImP miracle


Scale invariant vMSM (vSISM) * FImP miracle shines in the X-ray line?

The X-ray line at 3.5 keV reported this year is explained by RHN

$$\Gamma_{\nu\gamma} \simeq 1.62 \times 10^{-28} s^{-1} \left(\frac{\sin^2 2\theta}{7 \times 10^{-11}}\right) \left(\frac{m_{\tilde{\chi}}}{7 \text{ keV}}\right)^5$$

But it has been excluded for RHN with conventional productions, even for resonant production which has been excluded by Lyman-alpha bound A. Merle and A. Schneider, arXiv:1409.6311

The RHN from freeze-in with colder spectrum thus being favored!

Conclusions

 vSISM is a good example to address three leading new physics in an unified framework

The lightest RHN here is predicted to be an accidental DM, with FImP miracle

